Diferensial •
"DIFERENSIAL"
Pengertian Diferensial
Turunan fungsi (diferensial) ialah fungsi lain dari suatu fungsi sebelumnya, misalnya fungsi f menjadi f’ yang memiliki nilai tak beraturan. Turunan ( diferensial ) dipakai sebagai suatu alat untuk menyelesaikan berbagai masalah dalam geometri dan mekanika.
Konsep turunan sebagai bagian utama dari kalkulus dipikirkan pada saat yang bersamaan oleh Sir Isaac Newton ( 1642 – 1727 ), ahli matematika dan fisika bangsa Inggris dan Gottfried Wilhelm Leibniz ( 1646 – 1716 ), ahli matematika bangsa Jerma.
Turunan Matematika Adalah
Misal y ialah fungsi dari x atau y = f(x). Turunan (atau diferensial) dari y terhadap x
Rumus Diferensial
Rumus 1 :
Jika y = cxn dengan c dan n konstanta real
maka dy/dx = cn xn-1
contoh :
y = 2×4 maka dy/dx = 4.2×4-1 = 8×3
Rumus 2 :
Jika y = f(x) + g(x)
maka turunannya sama dengan turunan dari masing-masing fungsi = f'(x) + g'(x)
contoh:
y = x3 + 2×2 maka y’ = 3×2 + 4x
y = 2×5 + 6 maka y’ = 10×4 + 0 = 10×
Rumus 3 :
Jika y = c dengan c adalah konstanta
maka dy/dx = 0
contoh:
jika y = 6 maka turunannya yaitu sama dengan nol
Rumus 4 :
Turunan Perkalian Fungsi Jika y f(x).g(x)
maka y’ = f'(x) . g(x) + g'(x) . f(x)
contoh:
y = x2 (x2+2) maka
f(x) = xf'(x) = 2x
g(x) = x2+2
g'(x) = 2x
Kemudian masukkan ke rumus y’ = f'(x) . g(x) + g'(x) . f(x)
y’ = 2x (x2+2) + 2x . x2
y’ = 4×3 + 4x (jawaban ini juga bisa diperoleh dengan cara mengalikan terlebih dahulu lalu menggunakan rumus 2)
Rumus 5 :
ef (x) maka dy/dx = ef(x).f'(x)
contoh :
y = e2x+1
f (x) = 2x+1
f’ (x) = 2
maka f’ = e2x+1 . 2 = 2e2x+1
Rumus 6 :
Turunan Trigonometri Sin
Jika punya y = sin f(x)
maka turunannya yaitu y’ = cos f(x) . f'(x)
contoh :
y = sin(x2 + 1)
maka y’ = cos (x2 +1) . 2x = 2x. cos (x2 +1)
Rumus 7 :
Turunan Trigonometri Cos
Jika punya y = cos f(x)
maka turunanya adalah y’ = -sin f(x). f'(x)
contoh :
y = cos (2x+1)
maka turunannya y’ = -sin (2x+1) . 2 = -2 sin (2x+1)
Rumus Turunan Kedua
rumus turunan kedua sama dengan turunan dari turunan pertama .
Turunan kedua diperoleh dengan cara menurunkan turunan pertama.
Contoh :
Turunan kedua dari x3 + 4×2
turunan pertama = 3×2 + 8x
turunan kedua = 6x + 8
Contoh Soal 1
Persamaan garis singgung pada kurva y = 2×3-5×2-x+6 yang berabsis 1 ialah …
Penyelesaian :
y = 2×3 – 5×2 – x + 6 → x = 1
y’ = 6×2 – 10x – 1
y (1) = 2(1)3- 5(1)2 – 1 + 6
= 2 – 5 – 1 + 6
= 2 → ( 1 , 2 )
y’ = m = 6×2 – 10x – 1
= 6(1)2 – 10.1 – 1
= -5
Persamaan garis siggung : y – b = m (x – 1)
y – 2 = -5 (x – 1)
y – 2 = -5x + 1
5x + y +3 = 0
Jawaban : 5x + y + 3 = 0
Contoh Soal 2
Turunan pertama fungsi F(x) = Cos5(4x-2) ialah F’(x) = …
-5 Cos4 (4x-2) Sin (4x-2)
5 Cos4 (4x-2) Sin (4x-2)
20 Cos4 (4x-2) Sin (2x-2)
10 Cos3 (4x-2) Sin (8x-4)
-10 Cos3 (4x-2) Sin (8x-4)
Jawab :
F(x) = Cos5(4x-2)
u = Cos (4x-2) → u’ = -4Sin(4x-2)
n = 5
F’(x) = nun-1.u’
= 5 Cos5-1 (4x-2) . -4 Sin (4x-2)
= 5 Cos4 (4x-2) . -4 Sin (4x-2)
= -20 Cos4 (4x-2)Sin (4x-2)
= -10.2 Cos (4x-2)sin (4x-2) . Cos3 (4x-2)
= -10 Sin 2(4x-2) Cos3 (4x-2)
= -10 Sin (8x-4) Cos3 (4x-2)
= ( -4x+5) e-3x+4
Penerapan Turunan
Di bawah ini, beberapa penerapan turunan (dalam melihat karakteristik fungsi) yang sering digunakan:
1. Kemonotonan,
Mengidentifikasi apakah fungsi (grafik fungsi) bergerak naik (ke atas) atau bergerak turun (ke bawah)
2. Titik Ekstrem (Maksimum/minimum)
Mengidentifikasi titik balik fungsi (jika ada)
3. Titik Belok
Mengidentifikasi kecekungan fungsi, apakah cekung ke atas atau ke bawah.
Sedangkan, penerapan diferensial (turunan) dalam ilmu bisnis & ekonomi (yang dipelajari) adalah sebagai berikut:
1. Elastisitas
2. Fungsi Marginal
3. Analisis minimum (pada fungsi biaya)
4. Analisis maksimal (pada fungsi laba dan pajak)
Komentar